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Executive Summary 
At Veer Renewables, we continue to push the boundaries of numerical weather prediction (NWP) 

modeling and data analytics to provide advanced products and services to our wind energy stakeholders. 

In line with this commitment to innovation, we are excited to announce a transformative shift in our NWP 

computational capabilities. After meticulous evaluation, we are transitioning away from the standard 

Weather Research and Forecasting (WRF) software – grounded in conventional central processing units 

(CPUs) – to the cutting-edge AceCAST software by TempoQuest. This WRF-equivalent platform harnesses 

the raw speed and efficiency of graphical processing units (GPUs), offering greatly accelerated and cost-

efficient WRF simulations – a direct advantage we are eager to extend to our growing list of clients.  

 

AceCAST is the product of over five years of rigorous R&D at TempoQuest and empowers WRF users to 

achieve striking performance optimizations using the massive parallelism of GPU hardware versus 

traditional CPUs. With a broad set of refactored WRF physics, dynamic modules, and namelist options 

ingrained with NVIDIA CUDA or OpenACC GPU programming methodologies, AceCAST offers an 

effortless drop-in alternative to the conventional WRF workflow. 

 

Our decision to pivot from the industry standard WRF software to AceCAST was not taken lightly. Rather, 

the decision comes after months of evaluation and comparisons between the two software products. In 

this report, we share validation results from a recent WakeMap analysis centered on the offshore U.S. 

Mid-Atlantic. Here we conduct a year-long side-by-side assessment of WakeMap simulations with both 

WRF and AceCAST and assess modeled atmospheric variables including wind speed, turbulent kinetic 

energy, and power production. 

 

 
Figure E1: Mean annual wind speeds estimated in the U.S. Mid-Atlantic offshore region using WRF 4.4.2 (left) and AceCAST (built 

equivalent to WRF 4.4.2). Differences in the mean winds are shown in the rightmost panel. Not the offshore deficits caused by the 

modeled wind turbines. 

 

 

 

 

 

 



3 
 

The validation findings are unequivocal. We observed only minimal variances between WRF and AceCAST, 

as illustrated in Figure E1. These variances are of similar magnitude to those one might encounter when 

running WRF with a different compiler or on different CPU architectures.  

 

Given such consistent performance, Veer Renewables has confidently embraced AceCAST as our go-to 

NWP platform for WakeMap and other WRF-based products. In doing so, we are not just advancing our 

technological edge; we are committed to delivering these cost and time savings directly to our clients, 

reaffirming our position as an industry leader in innovation, speed, and affordability. 
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Introduction 
 

Veer Renewables and WRF Modeling 

Veer Renewables stands at the forefront of WRF modeling innovation in the wind energy industry. In 

February 2023, we proudly launched WakeMap – a first-of-its-kind WRF-based product that leverages the 

wind farm parameterization in WRF to model wind farm wake impacts on the local and regional wind 

resource. Described in detail in our white paper, WakeMap is now used by a growing list of wind energy 

developers to accurately quantify the historically underestimated impacts of neighboring wind farms on 

their current or planned projects. 

In early 2024, Veer Renewables will begin expanding its WRF-based product offerings, including wind 

maps and timeseries data, with options to include wind turbines or not. Users will be able to request 

simulations, as well as download and visualize results, all through an interactive web interface. 

NWP Acceleration through GPUs 

In recent years, Graphics Processing Units (GPUs) have emerged as powerful computational tools, offering 

dramatic advancements in parallel processing capabilities. Originally designed for rendering graphics, 

GPUs are now increasingly recognized for their aptitude in handling data-intensive tasks, making them an 

indispensable asset in a range of scientific computations. Especially in the realm of NWP modeling, GPUs 

hold considerable promise. Compared to the traditional Central Processing Units (CPUs), GPUs can 

process thousands of operations simultaneously, which is particularly advantageous for NWP modeling 

where the spatial domain is typically segmented into multiple gridded regions that are processed 

concurrently. By pivoting to GPU-based computations, not only can there be a significant reduction in 

simulation time, but also substantial cost savings in terms of energy consumption and infrastructure 

investments.  

TempoQuest and AceCAST 

TempoQuest’s flagship software, AceCAST, represents a leap in NWP modeling by significantly 

accelerating the WRF model. Harnessing the power of GPUs, AceCAST—born from half a decade of 

rigorous research—offers unparalleled performance enhancements compared to traditional CPU-based 

approaches. This GPU optimization not only makes it the world's fastest and most detailed weather 

forecasting model but also ensures meteorologists and end-users access more precise insights into 

localized weather phenomena at a fraction of the cost. The transformational capability of AceCAST, 

embedded with NVIDIA CUDA and OpenACC programming techniques, serves as a seamless substitute 

for established WRF configurations, typically boosting modeling processing speeds by a factor of five. 

Intent of Study 
As the winds of change sweep across the NWP computational landscape, the emergence of AceCAST 

introduces both promise and a need for validation. For the wind energy industry in particular, the accuracy 

and consistency of NWP models are paramount. While WRF has long served as the industry benchmark, 

the purported benefits of AceCAST – greatly enhanced speed and cost-efficiency – beckon for a 

comprehensive comparative analysis. Thus, in this report we summarize a meticulous examination of the 

two software products, comparing their performance in modeling the regional wind resource, the power 

output from turbines, and other atmospheric parameters within the nascent mid-Atlantic U.S. offshore 

wind areas. 

https://veer.eco/wp-content/uploads/2023/02/WakeMap_White_Paper_Veer_Renewables.pdf
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Domain and Model Setup 
The spatial domain for this analysis (Figure 1) is centered on the mid-Atlantic offshore region around 

Delaware to New York. A large 3-km domain is nested by a larger 9-km domain (not shown). Modeled 

wind farms are shown in green and are all currently in various stages of planning and construction.  

We selected this offshore region given the expected impacts of “long wakes”. These are conditions where, 

especially under stable atmospheric conditions, wakes can extend far beyond conventional expectations, 

often exceeding 50 kilometers in length. The U.S. mid-Atlantic offshore wind region is particularly 

susceptible to long wakes. The vast stretches of upwind fetch in the dominant southwestern wind 

direction, coupled with the induced stable stratification when warm air from inland areas like Delaware, 

Virginia, and North Carolina flows over the colder ocean, provides ideal conditions for long wakes to 

occur. 

For these reasons, there is growing concern that engineering-based wake models are drastically 

underestimating wake losses in this region. In response, wind energy stakeholders are increasingly turning 

to WakeMap for a better understanding and more accurate quantification of long wake impacts in this 

unique weather region.  

 
Figure 1:  Spatial domain used in this analysis. The inner 3-km domain is shown as a red box and modeled turbines 

are shown in green. The 9-km outer grid is not shown. 

In Figure 2 we show more detailed layouts of the modeled wind farms. Wind farm layouts and turbine 

technical specifications have been provided by an industry partner. Due to confidentiality considerations, 

we are unable to share specific details in this report. Instead, we provide approximate number of turbines 

per Lease Area in Table 1. We further note that wind turbine capacities modeled represent a range of 

capacities currently proposed by the wind turbine manufacturers for the US East Coast market..  
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Figure 2:  Lease Areas modeled in this validation study. 

 

Lease Area Number of Turbines  

(rounded to nearest 20) 

OCS-A 0512 180 

OCS-A 0544 40 

OCS-A 0537 120 

OCS-A 0538 120 

OCS-A 0539 160 

OCS-A 0541 120 

OCS-A 0542 120 

OCS-A 0549 80 

OCS-A 0499 200 

OCS-A 0498 100 

OCS-A 0532 80 

OCS-A 0482 80 

OCS-A 0519 40 

Table 1: Approximate number of turbines modeled for each offshore wind Lease Area. 

We launch a full year of atmospheric simulations representative of long-term conditions by constructing a 

Typical Meteorological Year (TMY). Specifically, we examine monthly statistics between 2000 and 2022 

from the ERA5 reanalysis product, extracted at the center of the model domain. For each calendar month, 

we examine distributions of 100-m wind speed, 100-m wind direction, and 2-m temperature, and identify 

which year most closely resembles the long-term 2000-2022 period. This year is then selected in the TMY 
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for that calendar month. The process continues until the optimal 12 calendar months are selected. Based 

on this approach, we arrive at the 12-month TMY for this analysis, summarized in Table 2.  

Month Year 

January 2019 

February 2015 

March 2020 

April 2006 

May 2015 

June 2001 

July 2012 

August 2020 

September 2018 

October 2011 

November 2017 

December 2006 

Table 2: Constructed TMY used in this validation study. 

The CPU-powered WRF and GPU-powered AceCAST simulations share an identical model setup, 

summarized in Table 3. We selected WRF Version 4.4.2 and TempoQuest provided an equivalent AceCAST 

distribution. Boundary forcings are provided by the ERA5 reanalysis product. We run simulations over 2- 

day periods with a 12-hour spin-up. These shorter simulation lengths are used to minimize WRF model 

drift (i.e., inner domain simulation diverging from the ERA5 boundary forcing), which is common for 

simulations longer than a few days. To construct a full year of WakeMap simulations, we simply 

concatenate the separate 2- or 3-day simulations into a single timeseries. Data is output every 10 minutes 

(instantaneous, not averaged) and post-processed to calculate atmospheric variables at multiple heights 

above ground level. 

Parameter Value 

WRF Version 4.4.2 

Boundary forcing ERA5 reanalysis 

Spatial resolution 3 km 

Nesting 9km – 3km 

Vertical resolution 20 m up to 200 m height, then increasing 

Timestep 30 seconds 

Data output intervals 10 minutes 

Simulation length 2-3 days with 12-hour spin-up 

Planetary boundary layer scheme Mellor-Yamada-Nakanishi-Niino 

WFP scheme Fitch 

Wind farm turbulent kinetic energy generation factor 0.25 

Table 3: Key setup parameters for both WRF and AceCAST. 
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Validation Results 

Mean Statistics 

We begin by examining mean maps of 120-m wind speed, power production from the wind farms, and 

TKE, as shown in Figure 3. Here we see very little divergence between the mean WRF and AceCAST results. 

Deviations between wind speeds are less than 1%, as are the modeled power estimates. Variances in TKE 

are slightly higher, peaking at +/- 1.5%.  

These differences are of similar magnitude to those observed when WRF is launched on different CPU 

architectures or built using different compilers. Overall, AceCAST is doing an exceptional job of 

reproducing mean annual atmospheric variables over the entire domain. 

However, we do note two anomalies in Figure 3, both of which relate to very minor differences in the grid 

cell locations between the two models: 

1. In the top-right plot, we see a single anomaly in wind speed difference along the coast of New 

Jersey. Upon examination, we found that different compilations of the WRF Pre-processing 

System (WPS) resulted in a single grid cell being characterized as water by the AceCAST WPS 

compilation and land by the standard WRF WPS compilation. As a result, we see slightly higher 

wind speeds in AceCAST due to the lower surface roughness of water compared to land. 

2. In the mid-right plot, we see a noticeable anomaly in mean power comparisons at the Empire 

Wind Lease Area. Upon investigation, we determined that this anomaly was again caused by slight 

differences in the WPS compilations. Specifically, different number of decimal places preserved in 

the latitude and longitude coordinates resulted in a single turbine being placed in a lower grid 

cell in the AceCAST run compared to the WRF run (see Figure 4) 
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 Figure 3:  Mean maps of 120-m wind speed (top row), power (middle row) and 120-m turbulent kinetic energy (bottom row) 

modeled using WRF (left column) and AceCAST (center column). Percentage differences between the WRF and AceCAST results 

are shown in the right column 
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Figure 4: Percentage difference in mean power between AceCAST and WRF centered at the Empire Wind Lease 

Area (turbines shown in orange). The observed anomaly is caused by different grid cell placements of a single wind 

turbine (circled in white). 

  

In Table 4, we compare mean capacity factor (CF) estimates across the different Lease Areas, which have 

been anonymized at the request of our industry partner. First, we acknowledge much lower CF values than 

generally predicted by industry standard methods, which we attribute to the extreme atmospheric stability 

observed in this region and the inability of standard wake models to fully capture these expected long 

wake impacts. Next, we observe very little difference in CF estimates between WRF and AceCAST. Overall, 

AceCAST tends to estimate slightly lower wind speeds than WRF within the Lease Areas, resulting in slight 

decreases in the CF estimates.  
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 Modeled Capacity Factor (%) Difference 

(%)  Lease Area AceCAST WRF 

Lease Area A 36.37 36.58 -0.21 

Lease Area B 36.08 36.23 -0.15 

Lease Area C 33.21 33.38 -0.17 

Lease Area D 35.50 35.72 -0.22 

Lease Area E 41.16 41.16  0.00 

Lease Area F 37.21 37.37 -0.16 

Lease Area G 42.60 42.76 -0.16 

Lease Area H 43.36 43.56 -0.20 

Lease Area I 40.63 40.66 -0.03 

Lease Area J 38.22 38.31 -0.09 

Lease Area K 34.99 35.17 -0.18 

Lease Area L 41.11 41.30 -0.19 

Lease Area M 36.71 36.71  0.00 

Lease Area N 35.38 35.35  0.03 

Lease Area O 44.98 45.08 -0.10 

Mean: -0.12 

Table 4: Capacity factor estimates across the Lease Areas, which have been 

anonymized at the request of our industry partner. 

Timeseries Analysis 

Next, we perform timeseries analyses of the AceCAST and WRF simulations. In Figure 5, we provide a 

snapshot of key atmospheric variables over January 2019. As shown in the figure, agreement between the 

WRF and AceCAST timeseries is exceptional, with only small deviations in atmospheric parameters.  

In Table 5, we examine timeseries statistics of wind speeds, spatially averaged across each Lease Area. The 

table shows very high correlations between the WRF and AceCAST timeseries, with R2 coefficients equal to 

0.989 or greater. Also in the table, we fit the wind speed data to a Weibull distribution and report the A 

and k parameters. Again, we see very strong agreement between WRF and AceCAST. For visual validation 

purposes, we plot distributions of 120-m wind speeds at Lease Area A in Figure 6. As we can see, the 

AceCAST and WRF wind speed distributions are nearly identical. 

More extensive timeseries validation was conducted in this study, including plots for different Lease Areas 

and additional statistical metrics such as bias and root-mean-squared-error for the different atmospheric 

parameters. However, for the sake of brevity, these results are not presented in this report. Across all 

spatial regions, performance metrics, and atmospheric variables, we found that AceCAST provides a near-

perfect replication of the WRF model.  
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Figure 5: Timeseries visualization of key atmospheric parameters in January 2019 within Lease Area A. 
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Lease Area 

Correlation 

Coefficient 

(AceCAST-WRF) 

Weibull Parameter A Weibull Parameter k 

WRF AceCast 
WRF AceCAST 

Lease Area A 0.992 9.20 9.18 1.79 1.79 

Lease Area B 0.991 8.70 8.68 1.90 1.90 

Lease Area C 0.990 8.37 8.35 1.84 1.84 

Lease Area D 0.989 8.96 8.93 1.92 1.92 

Lease Area E 0.989 9.36 9.35 1.87 1.86 

Lease Area F 0.988 8.97 8.94 1.81 1.81 

Lease Area G 0.992 9.61 9.59 1.97 1.97 

Lease Area H 0.990 9.99 9.96 1.85 1.85 

Lease Area I 0.992 9.56 9.55 1.86 1.86 

Lease Area J 0.992 9.31 9.30 1.83 1.84 

Lease Area K 0.992 8.99 8.97 1.77 1.77 

Lease Area L 0.990 9.73 9.70 1.85 1.85 

Lease Area M 0.991 8.95 8.93 1.93 1.93 

Lease Area N 0.991 9.49 9.48 1.94 1.94 

Lease Area O 0.990 9.95 9.92 1.96 1.95 

Table 5: Wind speed timeseries statistics between AceCAST and WRF 

 

 
Figure 6:  Distributions of mean 120-m wind speeds across Lease Area A. 
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Conclusions 
The results from this validation study are unequivocal: AceCAST is a near-perfect and greatly accelerated 

replication of the standard CPU-based WRF model. Whether looking at mean atmospheric parameters 

modeled across the entire domain or timeseries analysis at specific coordinates, the agreement between 

AceCAST and WRF is exceptional. 

Given such consistent performance, Veer Renewables has confidently embraced AceCAST as our go-to 

NWP platform for WakeMap and other WRF-based products. In doing so, we are not just advancing our 

technological edge; we are committed to delivering these cost and time savings directly to our clients, 

reaffirming our position as an industry leader in innovation, speed, and affordability. 

 

About Veer Renewables 
 

 

Veer Renewables was founded by Dr. Mike Optis in 2022 and 

provides advanced R&D solutions for wind energy stakeholders, 

with a special focus on wake modeling, wind resource 

assessment, and operational performance analysis. Dr. Optis is a 

world-leading expert in the intersection of meteorology, data 

science, and wind energy. Throughout his 15-year career, he has 

held roles with consultants, developers, and research institutes, 

including four years as a senior scientist at the National 

Renewable Energy Laboratory.  
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