

Application of AceCAST for the NYSM Profiler Data for Hyperlocal Weather Forecast Evaluation

V

V

Outline

• AceCAST

- Background
- Model performance
- Model advancements
- Future outlooks

• Data Assimilation (NYSM Profile network)

- Radiometer
- Project evaluation
- Societal Impact

AceCAST

What is it?

- NWP model ported from CPU to GPU
- Uses the Weather Research and Forecasting Model (WRF)
- GPU accelerated weather forecasting
- Supports major WRF dynamics, physics schemes, and namelist options GPU enables:
 - Much faster time-to-solution
 - Compared to standard computing methods (CPU)
 - Higher frequency capability (timesteps)
 - Greater awareness of localized weather phenomena
 - Reduced cost
 - Computational
 - Financial

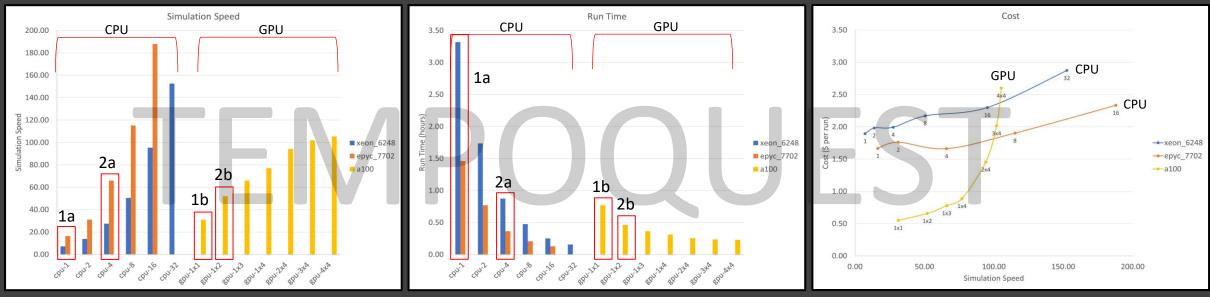
CPU to GPU Porting for NWP Models Background

- Most work has been with porting parts of an NWP model such as microphysics schemes, advection, climate radiation schemes, and chemical kinetics/subroutines [1-6]
- Others have ported entire models for specific applications such as ocean modeling, climate modeling, etc. [7-10]
- Research gap with porting entire general purpose NWP models

Motivation

• The ever increasing need for computational speed and power in a world overflowing with data has given rise to a lag in capability

Performance


Test Case

• 500 × 500 grid at 2km resolution run on 3 different processors (CPU and GPU) Speed (simulation time divided by real time):

- 1 GPU up to 4.3 times faster than 1 CPU (1a-1b)
- 2 NVIDIA A100 GPU's nearly 2 times faster than 4 Intel Xeon CPU's (2a-2b)

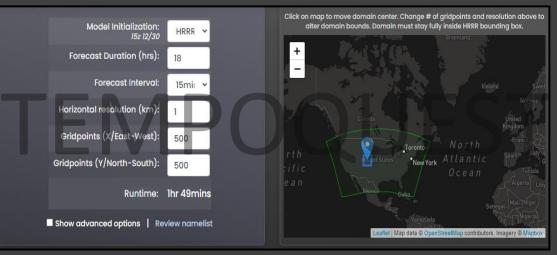
Cost per run*:

- GPU about half as expensive as CPU counterpart, up to 3.4 times cheaper
 - Through about 8 processors, beyond that workload is not enough for maximizing resource efficiency

*Based on estimated node costs of \$10,000 for Intel Xeon, \$20,000 for Intel Epyc and \$50,000 for NVIDIA A100 GPU

Verification and Validation

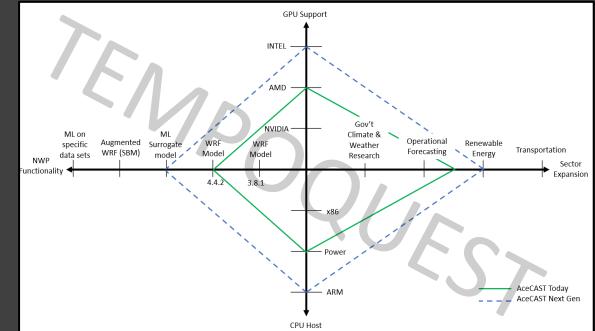
Extensive review process to ensure AceCAST meets high quality standards*


- For every release of AceCAST TempoQuest runs AceCAST through 1,000s of small simulations to test for different dynamics options and physics options
- Through a series of regression tests, TempoQuest also checks AceCAST:
 - Model performance across several practical temporal and spatial forecast ranges
 - Through 3 (main) different compiler builds
 - Different domain sizes and regions
 - Runtimes
 - Different GPU's (NVIDIA V100 and NVIDIA A100)
 - Support tests
 - Host-compile/exec. preservation tests
 - Bit-for-bit tests
 - False-positive support tests
 - etc...
 - Ensure GPU simulations are consistent compared to CPU and that differences are within an acceptable tolerance

AceCAST Advancements In The Last Year

- Upgraded to base WRF v4.4.2
 - Latest version December 2022
- Upgraded to AceCAST v3
 - More supported features
 - Expected end of January
- Support for AMD Instinct GPU's
 - Anticipated early June
- AceCAST OnDemand release
 - Cloud-Based weather forecasting
- Major updates to AceCAST visualization software (WSV3)
- Continuous addition of new physics

AceCAST (WRF) OnDemand Start Page


WSV3 Visualization

AMD Instinct GPU

Future Outlooks

- Fully porting the Data Assimilation (WRF-DA) and Chemical (WRF-CHEM) Models into AceCAST
 - TQI has already successfully implemented computationally inexpensive FDDA such as:
 - Surface analysis
 - Analysis nudging
 - And plans to soon include:
 - Spectral nudging
 - Observational nudging
 - Radiometer observations case study
- Creating hybrid WRF-Artificial intelligence weather forecasts

TempoQuest current roadmap

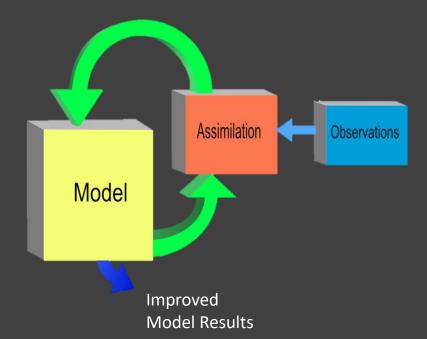
Radiometer*

- The New York State Mesonet (NYSM) profiler network observes boundary layer thermodynamics and winds Network of Radiometers igodol

 - Remote sensing observational platform
- Accuracy similar to radiosondes
- A 200 (EW) x 100 (NS) km area including six NYSM profiler sites, provides an ideal test bed for evaluation of high spatiotemporal resolution data for hyperlocal (1 igodolkm) weather forecasting
- Assimilation of NYSM profiler data at 5-min intervals
- Evaluate parallel process hyperlocal forecast latency and accuracy

NWS weather radar and radiosonde (green).

Radiometer Locations near New York, New York


Radiometer Device

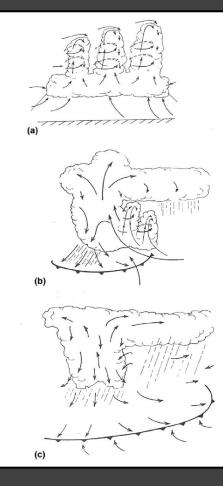
WRF Data Assimilation

Three different methods:

- Variational Most common
 - Includes Objective Analysis AND Initialization step
 - 3D/4D-VAR Time independent/dependent
- Objective Analysis Simplified
 - Additional Steps for processing needed
 - Older method and noisier method
- Newtonian Relaxation Nudging
 - Nudging the simulation as it runs
 - Analysis
 - Towards difference of simulated and spatial/temporal interpolations of reference state at each grid point
 - Spectral
 - Fourier decomposition
 - Difference of modeled and reference states
 - Longest waves are relaxed toward the equivalent wavelengths in reference state

Methodology

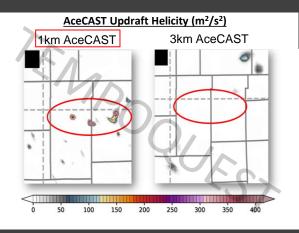
• Assimilation input data

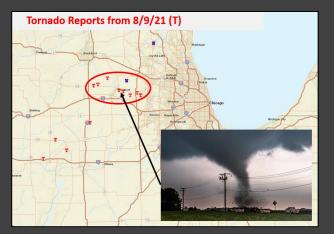

- NYSM Radiometer data
 - Temperature
 - Humidity
- Background weather data
 - Nested North American Model (3km)
- Process
 - Develop WRF simulations/forecasts using hybrid accelerated weather forecasting techniques
 - Initially CPU variational Data Assimilation
 - Use of GPU's enables increased assimilation speed and higher resolution

Expected Project Outcome Evaluation

Forecast evaluation*:

- 1. Convective initiation, development, timing and location
- 2. Low-level winds
- 3. Freezing isotherm altitudes during cold seasons
- 4. Additional weather forecast parameters
- **Applications:** 1. Space launches
- 2. Crewed and Uncrewed Aerial Vehicle operations
- 3. Solar and wind energy management
- 4. Electric load forecasting
- 5. Numerous other weather-sensitive operations

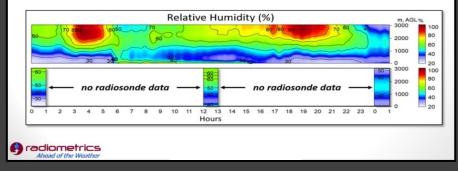




Project Impacts

- High resolution results have shown improved forecast accuracy
 - In reference to spatial and temporal modeling and profiling (see red boxes)
- Significant potential to improve forecast

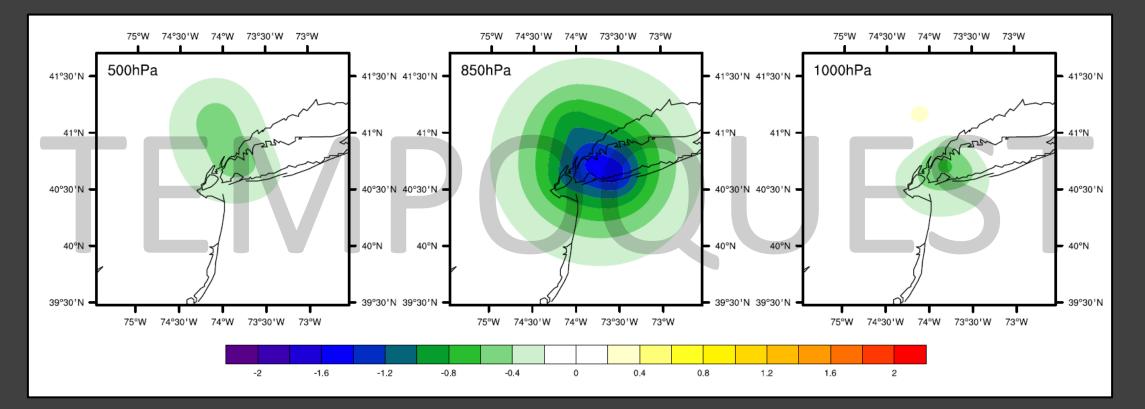
High-Resolution (1km) Accelerated Weather Forecasting


3km simulation underperforms when it comes to significant severe weather potential

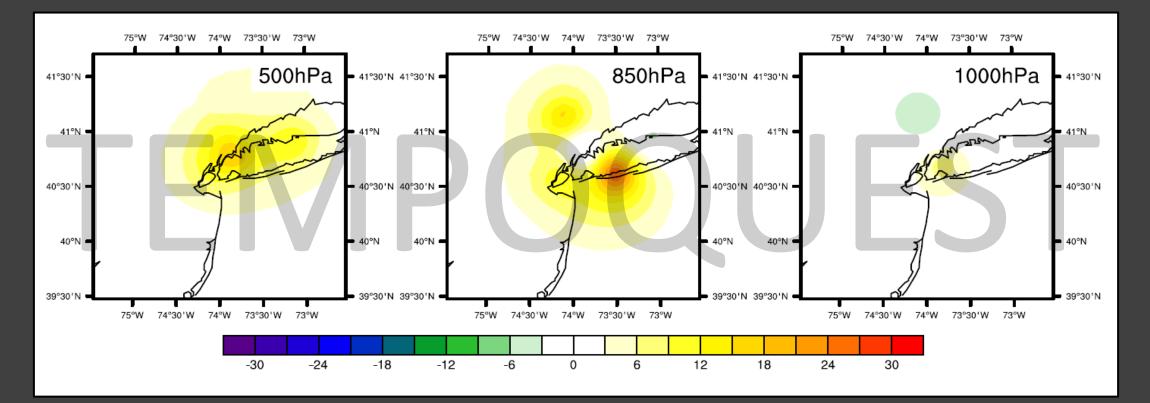
High Frequency Radiometer Data

Temporal Resolution

Continuous Real-Time Observations


- Standard operations yield profiles as often as every 2 minutes creating a "video" of the atmospheric conditions as opposed to the "snap-shot" provided by a radiosonde
- High temporal resolution allows for monitoring of dynamic conditions as they occur

Preliminary Results – Analysis Increment for Temperature


- Corrections to the first guess (background)
- Observations adding value to the model analysis by providing corrections and improvements in the analysis
- Most significant over the western Long Island region

Preliminary Results – Analysis Increment for Relative Humidity

- Corrections to the first guess (background)
- Observations adding value to the model analysis by providing correction and improvement in the analysis
- Most significant over the western Long Island region

In a Nutshell

• TempoQuest has accelerated WRF using GPU's

- Regional forecast modeling
- Computational benefits compared to CPU counterpart
- AceCAST serves as a drop-in replacement for existing WRF configurations
- GPU-acceleration enables:
 - Performance benefits
 - faster time-to-solution
 - higher resolution
 - deeper insights
- Using Radiometer data AceCAST has the potential to provide higher accuracy hyperlocal weather forecasts much faster compared to conventional methods

Thank You For Your Attention

Longer Question?

Let's start a conversation!

Email us at: support@tempoquest.com

Find us at: tempoquest.com

References

- 1. Sharma and Kulkarni (2015)
- 2. Wang et. al. (2011)
- 3. Michalakes and Vachharajani (2008)
- 4. Alvanos and Christoudia (2017)
- 5. Linford et al. (2009)
- 6. Korwar et. al. (2014)
- 7. Xu et. al. (2015)
- 8. Shimokawabe et. al. (2010)
- 9. Leutwyler et. al. (2016)
- 10. Giorgetta et. al. (2022)